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Tn this paper best L p approximate solutions are shown to exist for a wide class
of integrodifferential equations. Using approximation theory techniques, a local
existence theorem for solutions is established, and the convergence of the best
approximate solutions to a solution is shown.

1. INTRODUCTION

Huffstutler and Stein [8, 9] and Henry [5] have considered best approximate
solutions of nonlinear differential equations. Some of these results have been
generalized by Kartsatos and Saff [10] and Petsoulas [12] to integro
differential and integral equations. In each of the references [10, 12], the
existence of best approximate solutions is demonstrated only for approxi
mating functions composed of sufficiently many base functions. Compu
tational techniques based on successive approximations have been considered
by Olson [11], Henry and Wiggins [6], Allinger and Henry [1], and this author
[14]. Since a large number of base functions may make the computations
impractical, the focus of this study is the extension of the results of Kartsatos
and Saff [10] to any desired number of base functions. The results of Huff
stutler and Stein [8,9] and Henry [5] will thus be generalized to a wide class
of integrodifferential equations satisfying continuity conditions.

2. PRELIMINARY DEFINITIONS

Consider the initial value problem (IVP)
t

ret) = A(t, X(t)) + f F(t, s, Xes)) ds,
o

X(O) = A

where 0 > O.
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Let R denote the set of real numbers and define

B = {(t, s, X) E J2 X Rm: s ~ t}.

It is assumed that the functions A: I X Rm -+ Rm and F: B -+ R'" are
continuous.

For J = [0, T] C I with T > 0, consider the following norms.
For U = (u1 , u2 , ... , um) E Rm, let

I U I = m~x I Ui I
l~l~m

and for continuous mappings U: J -+ Rm let the Loo norm be given by

I U I~ = max I U(I)I.
IEJ

We also define the L p norms

(i T )l/P
I U I; = 0 I U(t)/p dt , 1 ~p < 00.

We next define the approximating set. For j = 1,2,... , m let G",i =

{gl,i' g2.i ,... , g"A, where gi.i E C'(I) for i = 1,2,... , nand forj = 1,2,... , m.
We also assume that for j = 1,2,... , m the sets Gn•i are each sets of linearly
independent functions on any interval [0, 0] C I, where 0 > O. Let S".i =
Span Gn •i and assume that for j = 1,2,... , m the sets U:=l Sn.i are dense
in C'(I) with respect to the norm maxi=O.l maxteI Ig(i}(t) [ for g E C'(I). We
also assume that gl.lO) =1= 0 for j = 1, 2,... , m. Our approximate solutions
will be chosen from the set

We now introduce the operator

L[X](t) = A(t, X(t)) +rF(t, s, X(s)) ds
o

and set

o(n, p) = inf I Q' - L[Qll; .
QE0'n

Then Qn E gJn satisfying

o(n, p) = I Q~ - L[Qn]l~ (2)
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will be called a best approximate solution from (!l\ to the IVP (l) in the sense
of the L p (l :::;; P :::;; ex)) norm on the interval J. For brevity we will refer to
any Qn E f!j!n satisfying (2) as a BAS of degree at most n on J.

3. EXISTENCE OF A BAS FOR EACH POSITIVE INTEGER n

THEOREM 1. Suppose that the functions A and F satisfy the continuity
conditions given below (1). Then for each positive integer n, for each J ~ I and
for 1 :::;; p :::;; 00 there exists Qn E f!j!n , where Qn is a BAS ofdegree at most n
on J.

Proof The techniques used in the proof of this theorem are quite similar
to those given by Coppel [3, p. 17] and adapted by Kartsatos and Saff [10].

Let I < p < ex) and choose {Qn,IHo=l C; f!j! n such that liml~a: I Q~,I 
L[Qn,d; I = 8(n, p).

Set

We may assume without loss of generality that

(3)

! En . l I; :::;; 8(11, p) + I for each I, (4)

Set M = IA I + TJ(p) + 2, where TJ(p) = IA' - L[A]I~ = I L[A]I~ . By
the continuity of A and F there is a constant N ?: TJ( p) + 1 satisfying

IF(t, s, X)I :::;; N and I A(t, X)I :::;; N (5)

whenever (t, s, X) E {(t, S, X) E B: I X I :::;; M}.
Define

y(t) = I A I + NW 2 + t) + (TJ(p) + 1) t1 /
q

,

where (lIp) + (llq) = 1. Since y(O) = I A I < M, the number

IX = inf({t E J: I y(t)1 ~ M} U {Tn

is positive. Similarly, the numbers

f31 = inf({t E J: I Qn,l(t)1 ;::;: M} U {Tn,

for I = 1, 2,... , are positive.

(6)
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We next show that f31 ~ ex for 1 = 1,2,... and thus establish the fact that

for t E [0, ex], 1 < p < 00, (7)

and for each I.
Integrating (3) from 0 to f31 we obtain

Since S E [0, f3d implies that I Qn.I(S) I ~ M, the inequalities given in (5) imply
that

13 1

I Qn.l(f31)1 ~ I A I + Nf31 + lNf312 +J I En.l(s)1 ds.
o

Using Holder's inequality and (4) we have

Since o(n,p) ~ 'YJ(p) for n = 1,2,... , we have

Since either f31 = 7' or I Qn.I(f3I)/ = M we may conclude that f31 = T or
y(f3l) ~ M. In either case f31 ~ ex. Thus (7) is established. The set f?lJn is
generated by a finite set of base functions which are linearly independent on
[0, ex], therefore inequality (5) implies that the coefficients of the components
of Qn.l are bounded independent of I. Hence there is an element Qn E f?lJn
which is a cluster point of the sequence {Qn.l}i:l .

From liml~'" IEn.l Ip = S(n, p) it follows that Qn satisfies (2) and is a BAS
of degree at most n. The cases for p = 1 and p = 00 require only minor
modifications of the above argument and are thus omitted.

4. LOCAL EXISTENCE OF SOLUTIONS OF THE IVP (1)

In this section we consider the IVP (1) on the interval J where we assume
Condition S:

4N7' + 3NT2 ~ 4.

We also make the assumption that for j = I, 2,... , m, Sn.i = lln , the set
of polynomials of degree at most n.
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The techniques used in this section are similar to those used in [6, 7, 14]
in other settings.

Set

Sn = {p E [!Pn: I pet) - A I ~ 2Nt + iNt2+ NTt, t E J}.

Then Sn is a compact subset of [!Pn . The mapping Tn: Sn -+ [!Pn is defined
as follows.

Let Q E Sn and suppose L[Q] = (L[Q]l , L[Q]2 ,... , L[Q]m). Then define
P = (PI' P2 ,... , Pm) by

max Ip;(t) - L[Q);{t)1 = inf Ipet) - L[Q);{t)j (8)
tEl PEI1n _ 1

for i = I, 2,... , m. Since P E [!Pn implies that P(O) = A and since continuous
functions have unique polynomial best approximations of degree at most n
(see [2, p. 80]), P is uniquely defined and we set Tn[Q] = P.

THEOREM 2. lithe IVP(l) satisfies the continuity conditions given below (I)
and if condition S is satisfied, then Tn maps Sn into Sn' Furthermore Tn is
continuous.

Proof We first show that the range of Tn is contained in Sn' Let Q E Sn .
Then

I Q I~ ~ I A I + 2NT + iNT2

and condition S implies that

I Q I~ ~ I A I + 2 ~ M.

Set P = Tn[Q] and define

E = P' - L[Q].

Since each component of P' satisfies (8), it must be that

I E I~ = I P' - L[Q]I~ ~ I L[Q]I~ .

Integrating (10) using (9) and (5) we obtain

I pet) - A I ~ Nt + !Nt2+ f \E(s)1 ds
o

~ Nt + !Nt2+ Nt + NTt

~ 2Nt + !Nt2+ NTt.

(9)

(10)
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We next show that Tn is continuous. Let Pi be the projection of :/!n onto
its ith component.

Then (dldt) Pi 0 Tn[Q] is the best polynomial approximation of degree at
most n in the scalar Loo norm to the function L[Q]i' Since A and Fare
continuous, the mapping Q -+ (dldt) Pi 0 Tn[Q] is continuous (see [2, p. 82]).
Hence the mapping Q -+ Pi 0 Tn[Q] is continuous. Recall that P E iJ!n c.c~

P(O) = A. Fimilly, (see [4, p. 101]) we conclude that Tn is continuous.
We may apply the Brouwer fixed point theorem [4] to prove the following

theorem.

TmOREM 3. If the conditions of Theorem 2 are satisfied, then the mapping
Tn: Sn -+ Sn has a fixed point Qn for each n.

Define En = Qn - L[Qn].

TJIEOREM 4. If the conditions of Theorem 2 are satisfied, then
limn~x I En I~ =, O.

Proof En = (el , e2 ,... , em) and Qn = (qn.I , Qn.2 ,... , qn.m)' Then using
Jackson's theorem [3, p. 22] we have

for i = 1,2,... , m,

where Wi is the modulus of continuity of L[Qn]i for i = 1,2,... , m.
Since Qn E Sn , I Qn I~ :s::; M for each n. Also

! Q;, !~ :s::; I Q~ - L[Qn]l~ + I L[Qn]l~

:s::; 2 I L[Qn]l~

and from the bounds on A and F it follows that the sequence {Qn}~=1 is
equicontinuous. Since F and A are uniformly continuous on compact sets, the
sequences {L[Qn]i}n~I for i = 1,2,... , mare equicontinuous.

Let E > O. There exists 0 > 0 such that if I t1 - t2 I < 0, tI , t2E J then
I L[Qn]i(tI) - L[Qnli(t2)I < 6E for i = 1,2,... , m and for each n. Taking
suprema we have

for i = 1,2,... , m.

Choose no such that n ~ no implies that r/2n :s::; o. Then n ~ no implies that

for i = 1,2,... , m. Thus I En Ix :s::; E for n ~ no·
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We are now ready to state and prove the main theorem of this section.
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THEOREM 5. If condition S and the continuity conditions given under (1) are
satisfied, then the IVP (1) has a solution W.

Proof In the proof of Theorem 4 it was shown that the sequence {Qn}~~l

is uniformly bounded and equicontinuous. By Ascoli's theorem, there is a
subsequence {Qn(l)}i':l and a continuous mapping W: J -+ R"', where
liml~oc I QnW - W I~ = 0. Letting I -+ 00 in the equation

and using Theorem 4 yields the fact that

lim I Q~(l) - W' I~ = °
!-)·Xl

and that W is a solution of (1) on J.

5. CONVERGENCE RESULTS

In Section 4 it was shown that there exists a sequence {Qn}~~l of fixed
points of the Tn mappings. This sequence of fixed points contains a sub
sequence {Qn(l)}i':l satisfying

lim IQ-(;) - W(;)I J =0
I

n(Z) 00,
..,00

i = 1,2,

where W is a solution of (1) on J. We now consider the BAS Qn and the
number 8(n,p) from Section 3. We also once again allow the more general
Sn.i sets defined in Section 2.

THEOREM 6. For 1 < p < 00, limn~oo 8(n, p) = 0.

Proof Since U:~l Sn,1 is dense in C'(J) for j = 1,2,... , m, we may choose
P n E f7jJn such that (for a proof of this, see [10D

lim 1p~i) - w(i) I~ = °
n"'OO

for i = 0, 1.

The theorem is proved by letting n -+ 00 in the inequality

8(n,p) < I P~ - L[Pn]I~.

The last theorem of this section will show that the sequence {Qn}~~l'

where each Qn is a BAS, has a subsequence which converges uniformly
on J to a solution of (1).
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TH:EOREM 7. Let 1 < p ~ 00 and suppose A and F satisfy the continuity
conditions given below (1). If condition S is satisfied, then there is a continuously
differentiable mapping W: J ---'>- Rm and a subsequence {Qn(l)};:1 of the sequence
{Qn}~~1 of BAS's where

lim I Qn(l) - W I~ = 0
1->00

and

lim 1Q~(l) - W' I; = 0.
1->00

Proof In the proof of Theorem 1 it was shown that

for all t E [0, ex],

where M is independent of I and n. Thus

I QnCt)1 ~ M for t E [0, ex] and for all n.

We now show that condition S implies that ex = 'T, If 1 < P < 00, then
condition Sand (6) imply that

1y(t)1 ~ 1111 + NC!;,'T 2 + 'T) + (1J(p) + l)l/q

~ 1111 + 2 - N'T + (-Y)(p) + I) 'TIN.

If'T ;? 1, then 'TIlq ~ 'T and

Iy(OI ~ 1111 + 2 + (7](p) + 1 - N)'T.

Since N ;? 7](p) + ),

Iy(t)1 ~ III I + 2 ~ M

If'T < 1 then 'TI/q < 1 and

for t E [0, 'T].

I y(t)1 ~ 1II I + 2 + 7](p) + 1 - N

~11I1+2~M

and

Iy(t)i ~ M for t E [0, 'T].

Consequently for 1 < P < 00, ex = 'T.
The proof of Theorem) was given for 1 < p < 00, and it was indicated
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that only minor modifications were required for the p = 1 and p = 00 cases.
For the p = 00 case the definition of y given in (6) is slightly changed. The
t1 /

q should be replaced by t. With this observation the above argument also
shows that ex = r for p = cx).

We have thus shown that the proof of Theorem 1 and condition Simply
that

for each n.

We next show that {Qn}~~1 is equicontinuous on J. Set

(11)

and

t2

I Qn(t2) - Qn(tl)I :s;; (N + Nr)(t2 - t1) +1 I En(s)Ids.
t1

Using Holder's inequality, we have

where

L1.,(t) = t if p = 00

if 1 < p < CfJ

Thus the sequence {Qn}~=1 is equicontinuous and uniformly bounded on J.
By the Ascoli theorem there is a subsequence {QnW}l'::1 and a continuous
mapping W: J --+ Rm, where

Jim I Qn(l) - WI~ = o.
hex>

Integrating (11) from 0 to t we find that

rt t
Qn(l)(t) = A + J, L[Qn(l)](s) ds + i En(l)(s) ds.

o 0

(12)

(13)
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From Holder's inequality and Theorem 6 it follows that

lim It En(s) ds = O.
n-)(f) 0

Letting I ~ Cf) in (13) now will yield

Wet) = A + f L[WJ(s) ds

and consequently W has a continuous derivative and is a solution of (1) on J.
Since W' = L[W] and Q~(l) = L[Qnw] + En(z) we have that

1Q~(z) - W' I; ~ 1L[Qn(l)] - L[W]I; + 1En(z) I;. (14)

From (14), (12), and Theorem 6 we obtain

lim I Q~(z) - W' I; = O.
l-)Cf)

6. CONCLUSION

Some work has been done on the relationship of the Qn of Section 4 with
the Qn of Section 3. For certain types of differential equations for T suffi
ciently small it is shown in [6] that Qn = Qn . This is a topic which needs
further study. Iteration methods have been successfully used to compute Qn
and numerous examples have been given [1,6, 7, 11, 14] for a variety of
settings.
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